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Summary

This research program deals with the application of high-performance computing methods

for the analysis of complete jet engines. We have initited this program by applying the

two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-pass jet

engine. The fluid mesh generation, domain decomposition and solution capabilities were

successfully tested.
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1. Introduction

The present program deals with the application of high-performance parallel compu-

tation for the analysis of complete jet engines, considering the interaction of fluid, thermal

and mechanical components. The research is driven by the simulation of advanced aircraft

propulsion systems, which is a problem of primary interest to NASA Lewis.

The coupled problem involves interaction of structures with gas dynamics, heat con-

duction and heat transfer in aircraft engines. The methodology issues to be addressed

include: consistent discrete formulation of coupled problems with emphasis on coupling

phenomena; effect of partitioning strategies, augmentation and temporal solution proce-

dures; sensitivity of response to problem parameters; and methods for interfacing multi-

scale discretizations in different single fields. The computer implementation issues to be

addressed include: parallel treatment of coupled systems; domain decomposition and mesh

partitioning strategies; data representation in object-oriented form and mapping to hard-

ware driven representation, and tradeoff studies between partitioning schemes and fully

coupled treatment.

2. Graduate Students

Two Ph. D. graduate students begin work this summer under support from the grant.

M. Ronaghi (U.S. citizen) began his doctoral studies at Colorado on January 1993.

Mr. Ronaghi has a M.S. in Mechanical Engineering at North Carolina A&T State Uni-

versity at Greensbroro and has worked at NASA Langley doing finite elcment structural

analysis. He has a good understanding of structures and composites and some computer

experience but lacks background in fluid mechanics, thermomechanics and propulsion. He

will remedy that by initiating a fluid course sequence this Spring semester and will start a

thermal-propulsion sequence in the Fall semester.

U. Gumaste (permanent U.S. resident) begins his graduate studies at Colorado in

the Fall semester, but will work on this project during June-July 1993 as an hourly R.A.

Mr. Gumaste has a B.Tech in Civil Engineering from the Indian Institute of Technology,

Bombay, India.

Both students were significantly helped by a visiting Post-Doc, St_phane Lanteri,

during their first modeling assignment. Dr. Lanteri is aifiliated with INRIA Antipolis.

He is working with Charbel Farhat in the development of parallel finite-volume/element

methods for 2D and 3D flow around aircrafts, and the analysis of nonlinear fluid-structure

interaction for flutter and stall analysis.

3. Flow Analysis of a By-Pass Engine

The main first-year objective is to "turn inside out" our exterior-domain aeroelastic

codes to fit the interior-flow engine problem. The codes axe then run to assess their strength



and weaknessesin numerical analysisand capturing physical effects. Observed weaknesses

are then addressed by a combination of methodology and modeling improvements.

The gas flow within an engine is very complex. It exhibits localization, vortices, sharp

pressure gradients and thermal-combustion effects. Our approach is to incorporate gas

flow and structural modeling common to the exterior problem, and then solicit the help of

experts to deal with new effects such as compression, diffussion, mixing and combustion.

To initiate this program we chose a rather old Conway by-pass engine sketched in

the textbook of Hesse and Mumford [1]. Figure 1 is a schematic diagram of the engine

presented in Hesse-Mumford's Fig. 11.7.

The purpose of the first experiments were to verify if the aeroelastic codes could be

gracefully adapted to confined gas flow. To play it safe we began with a two-dimensional

model and used the engine structure essentially as a way to provide boundary conditions

for the gas flow. Blades and combustion effects were ignored.

The rather complex boundary configuration provided a good test for the fluid mesh

generator, which "triangulates" the gas domain. This generation was done by S. Lanteri,

who is an expert in this subject.

The fluid meshes were treated with Parhat's domain decomposer program DOMDEC

[2]. Meshes were partitioned into 8 domains. Figures 3, 4 and 8 show the decompositions

produced by the Greedy, Recursive Graph Bisection (RGB) and Reverse Cuthill-McKee

(RCM) algorithms, respectievly. Ideally each partition should be single-connected to min-

imize interface communications overhead in parallel machines. Given the complex config-

uration of the gas domain, satisfaction of this criterion is by no means obvious. It can be

seen that RGB met the single-connectivity criterion, but that Greedy and RCM did not.

The theoretical and computational basis of the gas flow calculations are described in

the Appendix reprint of an article by Farhat, Lanteri and Fezoui [3]. Computations based

on Stokes flow were caz'rled out without difficulties. Figures 6 and 7 shoe contour plots of

pressures and density, respectively, for the steady state corresponding to a free-flow Mach

number of 0.4. Figure 8 shows the velocity field.

4. Future Work

The key need is to introduce more physical effects in the gas flow, namely compression,

diffusion and combustion. We need to decide whether to continue with a two-dimensional

axisymmetric model with artifices to represent nonaxisymmetric devices, or to proceed to

a "sector" three-dimensional model requiring tetrahedral meshes. We plan to consult with

NASA Lewis experts as to the best way to proceed at this point. Dr. Russ Claus of NASA

LeRC has offered to provide us a three-dimensional model of a more recent engine. Such

a model could be used as Testbed for the next phases of this research program.
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Appendix

Theoretical Background on Viscous Flow Computations

Summary

The following material, extracted from a recently published paper by Farhat, Fezoui and Lanteri

[3], summarizes the theoretical foundations of our parallel Navier-Stokes computations on unstruc-
tured meshes. Although the article focuses on CM-2 computations carried out during 1990-1991,

it also presents implementation considerations applicable to the present project.

I. Introduction

Previouslywe have reportedon our experiencewith performing two-dimensionalstructuredcom-

pressibleflowcomputations on the Connection Machine CM-2 (Sa_ti,Biringen and Farhat [At],

Lanteri,Faxhat and Fezoui [A2]).We have found that thismassively parallelprocessorispar-

ticularlywellsuitedfor explicitcomputations on regulargrids.For gridsthat resultin a high

virtualprocessorratio(VPR or VP ratio),using the NEWS fastcommunication mechanism, we

have measured the communication component of the simulationtime to representtypicallyless

than 10% of the totalCPU time. We have concluded that on a 64K machine (65536 processors),

efficiencyratesin the neighborhood of 2 gigaflopsare attainable.We have alsofound that for

both inviscid(Eulerequations)and viscous(Navier-Stokesequations)flow structuredcomputa-

tions,a 16K CM-2 (16384 processors)can be 4 and 6 times fasterthan one CRAY-2 processor,

respectively.

We focus hereon massivelyparallelviscousflowcomputations usingfullyunstructuredgrids.

In Section2, we formulatethe problem to be solved,and in Section3, we derivefirst-orderand

second-orderspatialschemes that are characterizedby an upwind integrationof the convective

fluxes.Second-order accuracy isachieved through a Monotonic Upwind Scheme forConservation

Laws (MUSCL) technique.An explicit,and thereforenicelyparallelizable,Runge-Kutta method

isselectedfor time integration;itissummarized in Section4. Because the mesh irregularities

inhibitthe use of the NEWS mechanism, interprocessorcommunication isbound to be carried

out via the slowermachine router.Ifa trivialprocessormapping isused, up to 60% of the total

CPU time is consumed in communication requirements. This bottleneckhas been previously

analyzed and documented by Farhat, Sobh and Park [A3] for massively parallelfiniteelement

computations in solidmechanics problems. Ithas alsobeen recentlyaddressed by severalother

investigatorsforfluidflow computations. In particular,Shapiro [A4] has proposed the use of a

graph coloringalgorithm to allow a particularimplementation of the communication stepswhich

reduces the communication costsby a factorof two. Hammond and Barth [A5] have developed

a vertex-basedpartitioningscheme forinviscidflow computations which attempts to minimize

both the computational and communication costsassociatedwith unstructuredgrids,l_ere,we

presenta strategyformapping thousands of processorsonto an unstructuredgridwhich leadsto

an efficientscheme forcarryingout communications of an arbitrarypattern. The key elements

of thisstrategyare discussedin Section5. These includethe selectionof an appropriateparallel

data structure,the partitioningof a given unstructuredgrid intosubgrids,and the mapping of

each individualprocessoronto an entityof thesesuhgrids.Combining thismapping strategywith

a communication compiler reduces the communication overhead by an order of magnitude and

bringsitdown to 15% of the totalsimulationtime. In Section6, we apply our massivelyparallel
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code and its highly vectorized variant to the simulation of low Reynolds number chaotic flows.

Measured performance results indicate that for such computations on unstructured grids, an 8K

CM-2 with single precision floating point hardware is as fast as one CRAY-2 processor.

2. Mathematical modeling

First we recall the mathematical problem to be solved, and introduce the notation that is used in

the sequel.

_. I. Goveenin9 equations

Let f_ C R2 be the flow domain of interest and r be its boundary. The conservative law form of

the equations describing two-dimensional Navier-Stokes flows is given by :

aw+ V.T(w) = V._(w) (1)

where

w = (p, _u, _, E) r
T

3_(w) = { F(W)\ G(W) )

{ R(W)_(w)
= \s(w) )

(2)

The functions F(W) and G(W), and R(W) and S(W), denote the convective and diffusive fluxes,

respectively. They can be written as :

F(W) = tr"_ + p
-puv

pv
( Our ]

G(w) = I p,,'+ p I
\ ,,(E + p) /

(o)Tzz
R(w) -

urz= -I- vr_ + Pr a_

( o )S(W)= _"

ur_y + v%,y + _ ae

(3)
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where p isthe density,_ = (u,v)isthe velocityvector,E isthe totalenergy per unitofvolume,

p is the pressure,and _ isthe specificinternalenergy. The variablesp, E, p, "_, e, and the

temperature T are relatedby the stateequation for a perfectgas:

p - (-_- 1)(m- _Pll_ll _) (4)

and by:

= C,T = E I_(I[-WI[=) (5)
p z

where 7 denotes the ratioof specificheats.

The components of the Cauchy stress tensor r==, r=y and _'_y are given by:

2

(_-_ _,a_ (6)

where # and k axe the normalizedviscosityand thermal conductivitycoefficients.Two character-

isticnumbers appear in the above equations;the Reynolds number Re = poUoLo where p0, U0,
#0

L0 and #0 denote respectively,the characteristicdensity,velocity,length and diffusivityof the

flow Under consideration,and the Prandt! number Pr = #0C__._p
k0 "

We consider the initial and boundary value problem (IBVP):

--gT+ V.Y(w)= _V._(w) •

w : w (r) :r r : o.

x _+

(7)

where W0 and Wr are specified functions, and focus on finding a weak solution of (7) that is
amenable to massively parallel computations.

P.2. Boundary conditions

We axe mostly interested in external flows around airfoils. Therefore, we consider the case where

the computational domain ft is delimited by the boundary r = rb u too. We denote by "_ the
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outward unit normal at a given point of 1" (Fig. A1).

r_

Um

Fig. A1. The computational domain

In the fax field, we assume that the viscous effects are negligible so that the flow is uniform.

We adopt a formulation where the physical variables are non-dimensionalized. The free-stream

vector Woo is given by:

\ sin a } Poo = 7M&

where c_ is the angle of attaA:k and Moo is the free-stream Mach number. On the wall boundary

rb, we impose the no-slip condition and specify the temperature:

_=-_ T=T_ (9)

We do not impose any boundary condition on the density. Therefore, the total energy per unit of

volume mad the pressure on the wall are given by :

E = pC, Tb p = (7 - 1)E (10)
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3. Spatial discretization

3.1. Preliminary

The flow domain 12 is assumed to be a polygonal bounded region of R u. Let 7_ be a standard

triangulation of _'l, and h the maximal length of the edges of Th. A vertex of a triangle A is denoted

by Si, and the set of its neighboring vertices by K(i). At each vertex Si, a cell Ci is constructed

as the union of the subtriangles resulting from the subdivision by means of the medians of each

triangle of/1_ that is connected to Si (Fig. A2). The boundary of Ci is denoted by OCi, and the

unit vector of the outward normal to OCi by -'_i = (v_x, v_v). The union of all of the constructed

cells forms a non-overlapping partition of the domain ft:

_8

-" U Ci (11)
i=l

Fig. A2. Cell definition in an unstructured grid

For each cell Ci, a characteristic function _i is defined as :

[ 0 otherwise
(12)

Also, the following discrete spaces are introduced:

vh = {vhI.h • c°(n), vh I_ e e,, vA • Th}

Wh = {vh I vh • L2(f_), vn Ic,= vi = constant, i = 1.... ,ns}
(13)
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whereP1 is the space of polynomials in two variables and of degree 1. Clearly, any function f

belonging to _2h is uniquely determined by its values f(Si) at each vertex Si, and can he expressed
as:

(14)

where i=a,{N_}__-I is a basis of Vh. Finally, it is noted that a natural bijection between the spaces
_'h and )42_ can be constructed as:

vs e v_ , s(s(_X))= _ z(s,)_,(_X) (_5)
i_1_

3._ Variational formulation and first order spatial approzimations

A variational formulation of the IBVP (7) goes as follows:

Find W_ E (V_) 4, V_h E 12h

/ OW_
[

---_,dzdy + J "_._(Wh )_hdzdy

1

= _ f V._(W,,)_,,a_.,ty

(16)

We construct a mixed finite volume/finite element (Galerkin) approximation for solving the above

problem by introducing appropriate schemes for computing the left and right-hand-side integrals of

(16). Chosing _0_ as the shape function Ni associated with the node Si and applying the operator

5' to the left hand side of (16) leads to a mass-lumped variational approach which transforms the

above equation into:

/ OWh dzdy + f vOt
Ci Ci

I / g.'_(W_,)Nidxdy-"gi_
S_pIVi

(17)

where SupNi = U A. Using Green's formula for the convective term and integrating by part
A,SIEA

the diffusive one leads to:
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+ f _(w_).r',a_
OC_

=-R--;  (Wh)'VN' e eY
_,Si E_ Z&

1 f g(Wh)."_.V_d_+_
I'bUFoo

(18)

where N/a is the restriction of Ni to triangle A. Finally, we drop the right hand side boundary

integral as we enforce the viscous boundary conditions in a strong form on rb and neglect the

viscous effects on rc., so that equation (18) simplifies to:

f _-._dzdy

Ci

1

Re

+ _i f _(Wh)."_ijda<. 1>
jE (')OC,,

+ f Y(Wh)._id_, < 2 >
8CinFb

+ f Y(Wh).-_,d_ < 3 >
_C_ rIFoo

7__Wh.VN?dzdy < 4 >

£_,SiE A ,_

(19)

where W'h is the specified value of Wh at the boundaries.

The reader should note that the above formulation leads to a locally one-dimensional com-

putation of each convective term, along the normal direction "b'*. For this purpose, the boundary

OCi of the cell C_ is split into hi-segments OCi i which join the middle point of the edge [S_Sj]

to the centroids of the triangles having both of Si and Sj as vertices (Fig. A3), and the integral
< 1 > is evaluated as:

jEK(i)aCi j • . ..

(20)

where _E*(O) is some approximation of the convective flux computed at the interface between cells

Ci and C'i.

Following Fezoui and Stoufflet [A6], we choose _(0) to be a numerical flux function

associated with a first-order accurate upwind scheme (Van Leer [A7]). It is denoted here by HI} ),

where the superscript (1) emphasizes the first order accuracy, and can be written as:

(21)
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where W_ = Wh(S_) and Wj = Wh(Sj). For example, the following numerical flux functions can

be used to construct H(_):

• Roe's Scheme [AS]

•_ (u,v,-_)= _u,-;)+2_(v,-;) _dIu,v,-;) (22)

where d (U, V, "_) is a numerical diffusivity defined as:

(23)

and I_r is some mean value of U et V.

Si--

G2. i j

G1, ij

* Sj

Fig. A3. Splitting of OC_j

• Steger and Warming's scheme [A9]

where A - .A+ + A- and [ ,4 [-- .A+ - ,4- .

The viscous integral < 4 > is evaluated via a classical Galerkin finite element P1 method

which results in a centered scheme. Since the approximations of the physical v_riables are taken
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in Vh, the components of the stresstensorand those of V/V_

velocityvectorin a triangleiscomputed as:

are constant in each triangle. The

3

i __k-g_,= _._ (251
k----1,keA

Consequently, the viscousfluxesaxe evaluatedas:

where Rz_ and Sa axe the constantvaluesof R(W) and S(W) in the triangleA.

(26)

3.3. Higher order extension

The numericalintegrationwith an upwind scheme describedabove leadsto a spatialapproximation

that isonly first-orderaccurate.Here, we focuson constructinga second-orderaccurate solution

without changing the space of approximations. We develop a second-order scheme that is an

extensionof Van Leer'sMUSCL method [A7]to the case of unstructuredmeshes.

Usually,a second-orderapproximation requiresthe evaluation of the gradientof the solution

at each vertex. Clearly,the gradientof a function vh of Vh is constant in each dement and

discontinuousin the flow domain. Followingthe MUSCL method, one way to achieve second-

order spatialaccuracy isto evaluatethe fluxeswith extrapolatedvaluesWq, Wji at the interface

0Ci N cOCj.Basically,thisleadsto substitutingH_ )in the previousscheme by//_) which isgiven

by:

H}7)= _,_ (w,i,w_,, -_,j)
I _ ---"'_-w,_ = w, + _(RYw), .s, sj

1 _"---'+wi, = wj _(_w)j.s, sj

(27)

where the approximate "nodalgradients(_W)Zj are obtained via a _-combination of centered

and fullyupwind gradients:

(_--_),"= (_-_)(V_)F'"'+ _(v--_),_''' (28)

Here, a centered gradient (V--B_)? en' - (V--i-_)#=° can be chosen as any vector satisfying:

Cent(v--r_), .s,s_ = w_ - wi (29)

A nicely parallelizable scheme for computing the upwind gradients (V---_)/up_ goes as fol]ows.

First, we note that (V----_)_ p_ - (_-_)#--1, and from (28) we derive:
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(3O)

We compute the half-upwind gradients (j3 = ½) via a linear interpolation of the Galerkin gradients

computed in each triangle of Ci, so that:

=o,
i

dzdy

C_

3
1 area(T)

--area(C,) E 3 E WkV-_W_
AeCi k=l,keT

(31)

Finally, we evaluate the nodal gradients using the following third-order biased scheme:

= +

2 _--_
= +

(32)

3.4. Boundary conditions

The second term < 2 > and the third term < 3 > of the right-hand side of (19) contain the
physical boundary conditions. These are represented by the vector ]_r which involves quantities

that depend on the interior values of Wh, and quantities that are determined by the physical

boundary conditions.

Wall boundary : the no-slip condition is enforced in a strong form (9, 10) so that the corre-

sponding boundary integral < 2 > does not need to be evaluated.

Inflow and outflow boundaries : at these boundaries, a precise set of compatible exterior data

which depend on the flow regime and the velocity direction must be specified. For that purpose,

a plus-minus flux splitting is applied between exterior data and interior values. More precisely,
the boundary integral < 3 > is evaluated using a non-reflective version of the flux-splitting of

Steger and Warming [A9] :

J Y:(W_).V_da = A+(W,,-_oo).W, + A-(W_,-_oo).Woo
8CiflFoo

(33)
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4. Time discretization

The resulting semi-discrete fluid flow equations can be written as:

dW

d---i-+ ¢(W) = 0 (34)

Because it lends itself to massive parallelism, the explicit Runge-Kutta method is selected for

integrating the above equations. A 3-step variant is used here. It is summarized as :

W(O) = W _

W (_) W (0)

W_+ 1 = W (a)

At
¢(W (_-1)) k = 1,2,3 (35)

4-k

The above scheme is often referred to as the low-storage Runge-Kutta method as only the solution

at substep a - 1 is used to compute the one at substep a. It is third-order accurate in the linear

case, but only second-order accurate in our case.

5. Parallel implementation on the Connection Machine CM-2

Clearly, expressions (19) and (27-35) reveal that both the spatial and temporal integrations are in

principle nicely parallelizable. In this section, our interest lies in investigating the most efficient
way to implement these computations on a Single Instruction Multiple Data (SIMD) massively

parallel computer such as the Connection Machine CM-2. Special care is given to interprocessor

communication because mesh irregularities: (a) inhibit the exploitation of the NEWS grid, so

that the relatively slow router must be used, and (b) induce a different amount of communication

steps within each processor, which is not particularly desirable on a SIMD machine. Rather

than overviewing the CM-2, we refer the reader to the technical summary of Thinking Machines

[A10] for architectural details, and to Farhat, Sobh, and Park [A3] for an in-depth analysis of

interprocessor communication on the CM-2 when computing over an irregular mesh.

5.1. Parallel data structure

Behind the performance of any parallel algorithm lies the choice of the corresponding parallel
data structure. The latter is closely related to both the entity and the task to be assigned to

each processor. Therefore, all of the computational, communication and memory requirements
should be considered before the distributed data structure is determined. For the mixed finite

volume/finite element method presented here, we consider four candidates for a fundamental

entity (Fig. A4):

• the vertex Si,

• the edge Eq joining the vertices Si and Sj,

• the element (here the triangle) A_jk connecting the vertices Si, Sj and Sk,
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* and the cell C'i defined in Section 3.1.

Si

//1
v w

ijk

Ci

Fig. A4. Fundamental entity candidates

Memory considerations

While regular grids axe most often characterized (in terms of memory requirements) by their

number of vertices Nv, irregular triangular grids can be also characterized by either their number

of elements Nzx, or by their number of edges NE. Here, we assume for simplicity that 7_ is

characterized by its number of vertices. Euler's relations for a triangulation state that :

Nv + Na - Ne, = 1

2Ne, - Nvv = 3Na
(36)

where NBv denotes the number of vertices at the boundary of the triangulation.

that :

This implies

Na ,_ 2Nv and NE: _ 3Nv (37)

Therefore, if Th is designed, for example, so that its number of vertices matches a given Connection

Machine size, the VP ratio associated with each data structure candidate varies as indicated below:

Vertex Edge Element Cell

VPR i 3 2 1

The reader should note that for the edge case, the machine automatically selects a VP ratio of 4,

since it is the closest power of two to the theoretical VPR.. Clearly, the vertex and cell entities are

the best candidates on the sole basis of e$cient memory usage.
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Operation count

The numerical algorithms discussed in Section 2 and Section 3 can be organized around three

basic computational steps :

(Step a) evaluation of the Galerkin gradients (32),

(Step b) evaluation of the diffusive fluxes (26),

(Step c) and evaluation of the convective fluxes (27).

While Step (c) is most efficiently performed using edge-wise computations, Step (a) and Step

(b) are inherently element-level calculations. Therefore, whatever fundamental entity is selected,

it must contain both edge and element information, which rules out the edge Eij data structure.

On the other hand in an element-based partition, every triangle Aij_ provides direct access

to all of the three edges Eq, Ejk and Ekl. However in that case, two VP sets must be used;

one containing N_ processors which store triangle related data (geometrical data), and another

one containing Nv processors which store vertex related data (physical data). Otherwise, if only

one set of virtual processors is used and assigned to both triangle and vertex data, a nodal result

would be duplicated in as many processors as there are triangles connected to that vertex.

The vertex entity 5'i is an effective candidate only when augmented with the auxiliary data

structures that can handle the data associated with the elements and edges connected to a given

vertex -- that is, when transformed into a cell data structure.

Finally, we note that the cell entity stores both vertex and element data, and therefore

provides access to all of vertex, element and edge information. Consequently, only element and

cell partitions are retained for further discussions.

Next, we evaluate the operation count for each of Step (a), Step (b) and Step (c), as-

suming an element- or cell-based data structure. We denote by CcE and aCab , the number of

arithmetic operations associated with one edge computation during Step (e), and with one tri-

angle computation during Step (a) and Step (b), respectively. The computational complexities

characterizing the two retained candidates are tabulated below.

Element Cell

Step (c) 2 × C E 2 × C_

Step (a) + Step (b) C_ 3 x C_

In both an element- and cell-based partition, an edge is shared by two virtual processors, so

that the flux H_/) a_ross [SiSi] is computed twice. Only an edge partition would eliminate

these redundant computations, but that choice has already been eliminated. In a cell-based

partition, a triangle Aii_ is shared by three virtual processors, and therefore additional redundant

computations are generated.

Communication costs

The computational steps discussed above require four communication steps denoted here by (cl),

(c2), (c3), and (c4). These are discussed below for the element and cell parallel data structures.
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First, we consider the ease of an element-based partition. During the first communication

step (cl), each virtual processor assigned to a triangle Aijk gets the physical states at vertices

Si, Sj and S_ from neighboring processors. Then, the computations in Step (a) and Step (b)

axe carried out. During the second communication step (c2), the element-wise results are sent

back to the virtual processors holding vertex data. The latter virtual processors use these values

to compute the nodal gradients (32) and diffusive fluxes (26). In step (c3) the nodal gradients

are communicated to neighboring processors. Next, each virtual processor evaluates three second-
order convective fluxes (15) across the three edges connected by triangle Aijk. During the last

communication step (c4), the edge-wise fluxes are sent to the virtual processors holding vertex
data.

Communication with a cell-based partition is more complex, as each cell may have a differ-

ent number of neighbors. However, fewer communication steps axe needed because each virtual

processor stores within its local memory all of the element-wise values that axe necessary for the

evaluation of the nodal gradients and the diffusive fluxes, as well as the elemental convective
fluxes.

The communication count associated with the four steps (cl) to (c4) is tabulated below

for ez0eh of the two retained data structure candidates. N_,a-_a denotes the maximum number of

neighboring cells.

Element Cell

(cl) 3 N_?;_
(c2) 3 0
(c8) 3 NZ'_;a
(c4) S 0

Selected candidate

The operation and communication counts are summarized below for both the element and cell

data structures. Equations (36) are used to express the results in terms of the number of vertices

in the mesh.

Element Cell

Operation count
Communication count

(6 x c_ + 2 x oh) x Nv
30 x Nv

(6 x Cy + 6 x C.%)x Nv
12 x Nv

Clearly, redundant arithmetic operations can be avoided only at the expense of additional com-
munication characterized by an irregular pattern, which is usually not beneficial on a massively

parallel processor such as the CM-2. Therefore, we have chosen the cell-based parallel data struc-

ture and have accepted the additional cost of redundant flux computations. Hammond and Barth

[A5] have invoked a graph theory result due to Chrobak and Eppstein [A17] to eliminate redun-

dant edge-based flux computations for Euler flows. This result states that for any planar graph,
there exists an orientation of the edges such that no vertex has more than three edges directed

out from it. This means that there exists a cell partition where no processor needs to compute the

convective fluxes across more than three edges of the computational cell. However, this graph the-

ory result does not apply for our viscous computations because these also include element-based

operations.
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5._. G_d decomposition and processor mapping

Efficiency in arbitrary communication on the CM-2 requires the minimization of both the "ham-

mering" on the router -- that is, wire contention, and the distance that information has to travel

m that is, the number of hops between the sender and receiver processors. Here, this implies that

: (a) adjacent cells must be assigned, as much as possible, to directly connected processors or

processors that are lying in directly connected chips, and (b) contention for the wire connecting

neighboring chips must be reduced.

In a first step, the unstructured grid is decomposed into a series of subgrids each containing

16 adjacent numerical cells. Each subgrid is assigned to a certain CM-2 chip that is subsequently

identified, so that adjacent cells within a subgrid are assigned to directly connected processors lying

in the same chip. As a result, off-chip communication is needed only across the subgrid boundaries.

Wire contention is reduced if each of the defined subgrids is surrounded by the largest possible

number of neighboring subgrids. Indeed, wherever a subgrid boundary is shared with several other

subgrids, off-chip communication is split between distinct chips and is distributed across several

of the available inter-chip wires (Fig. A5). On the other hand, if for example a subgrid is adjacent

only to two other subgrids, a maximum of two wires can be used during off-chip communication,

which may create a severe wire contention that would serialize communication and significantly

increase its cost. Here, we use the mesh decomposer of Farhat [All] which has proven to be very

effective at reducing Wire contention on the CM-2 (Faxhat, Sobh and Park [A3]).

WIRE 1

WiRE,o

WIRE 9 ._

i WIRE 8 /
WIRE 7

WIRE 3

IRE 4

WIRE 6

Fig. A5. Grid decomposition with reduced wire-contention

The next step is to reduce the distance that information has to travel during off-chip commu-

nication, that is when data is exchanged between centers of cells that are assigned to processors

lying on different chips. This can be achieved by assigning adjacent subgrids as far as possible to

directly connected chips. A combinatorial optimization-like procedure known as Simulated An-
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healing(see,forexample, Flower,Otto and Salama [AI2])isprobably the most popular technique

for tacklingthismapping problem. However, it isa very expensive procedure which has often

proved to be impractical.Alternativeheuristic-basedschemes have been developed by severalau-

thorsincludingBokhari [A13],Farhat [A14],and recentlyHammond and Schreiber[A15].In this

work, we have adopted the mapper of reference[A14]. It isbased on a combined greedy/divide

and conquer approach and istuned for hypercube topologies.

A detailedanalysisof interprocessorcommunication on the CM-2 forunstructuredgridscan

be found in Farhat, Sobh and Park [A3]. In that reference,itisshown that mesh irregularities

induce an MIMD (MultipleInstructionMultiple Data) styleof programming for the communi-

cation phase which dominates the cost of communication. It is also suggested that since the

irregularpattern of communication isfixedin time, a considerableimprovement can be achieved

ifthat pattern isevaluated during the firsttime step,then compiled or storedin the CM-2 for

re-usein subsequent time steps.However, no softwarewas availableat that time for validating

the proposed communication strategy.Recently,a communication compiler prototype has become

available(Dahl [A16])and can be used for storingthe routing pattern. In Section 6, we report

on itsperformance.

6. Numerical Experiments

(This Section reports on numerical experiments on the CM-2 and Cray 2. Since airfoil problems

are of limited important for the present research, they are not presented here.)

7. Closure

Mixed finite volume/finite element spatial schemes for fully unstructured grids are developed and

implemented on the CM-2, and applied to the simulation of two-dimensional viscous flows. Second-

order accuracy in the discretization of the convective fluxes is achieved through a Monotonic

Upwind Scheme for Conservation Laws (MUSCL) technique. The diffusive fluxes axe computed

using a classical Galerkin finite element method, and the resulting semi-discrete equations are

time integrated with an explicit Runge-Kutta algorithm.

A strategy for mapping thousands of processorsonto an unstructured grid is presented.

Itskey elements are given by the selectionof an appropriateparalleldata structure,the careful

partitioningofa given unstructuredgridintospecificsubgrids,and the mapping ofeach individual

processoronto an entityof thesesubgrids.Whenever the communication patternsare compiled

duringthe firsttime step,the totaltime elapsedininterprocessorcommunication usingthe router

isdrasticallyreduced to representonly 15% of the totalCPU time of the simulation.
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